Published By
This article is originally published in Motor India Online Publication. It tries to encompass what sensor fusion is, the different sensor fusion techniques, challenges faced, and the use of right KPI’s and methods to achieve higher accuracy. It is authored by Mr. Prashant Vora, Senior Practice Director for Autonomous Driving at KPIT. We have tried to capture a summary of the entire article below.
Vehicles equipped with Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles (AV) use different sensors like Cameras, Radars, Lidars, and Ultrasonic sensors which act as the eyes of an autonomous vehicle (AV) and help the vehicle perceive its surroundings, i.e., people, objects, traffic, road geometry, weather, etc. This perception is critical, and it ensures that the AV can make the right decisions, i.e., stop, accelerate, turn, etc.
As we reach higher levels of autonomy in autonomous driving, the complexity increases substantially. Here multiple sensors are required to understand the environment correctly. But every sensor is different and has its limitations, e.g., a camera will work very well for lane detection or object classification. In contrast, a radar may provide good data for long-range detection or in different light conditions.
Capabilities | Camera | Radar | Lidar |
---|---|---|---|
Long range detection | Average | good | Average |
Different light conditions | Average | Good | Good |
Different weather conditions (light rain, fog) | Poor | Good | Poor |
Object classification | Good | Poor | Good |
Stationary object detection | Good | Poor | Good |
Table 1 – Sensor capabilities
Using Sensor Fusion techniques, data from multiple sensors is fused in Autonomous Vehicles to provide the best possible input so that the AV takes the correct decisions (brake, accelerate turn, etc.)
Sensor Fusion improves the overall performance capability of an Autonomous Vehicle, and there are multiple fusion techniques and which one to use depends on the feature’s Operation Design Domain (ODD). Some examples for the different types of fusion techniques are mentioned in the original article.
The complexity of the environment and features specifications drive what kind of fusion strategy and what type of fusion requirement needs to be worked out. Executing Sensor fusion is a complex activity, and one should account for numerous challenges. Do have a look at article to understand the eight key challenges faced during sensor fusion.
To ensure high levels of accuracy with Sensor Fusion, one must ensure the right KPIs and robust design is being used, it includes
The article also speaks about some key aspects of design: Selection of algorithms for data association and estimation technique, fusion strategy, Track Management, and Filter tuning.
It is also essential to validate fusion to ensure software quality and scenario covers. However, validation can lead to millions of scenarios, so it is always important to use the right validation strategy to test fusion with Simulated data, real-world data, or vehicle testing.
So fusion is a critical perception component for AD performance. One must consider key practical aspects and define the right strategy for design and validation to achieve the highest AD software maturity level.
At KPIT, we have been working on fusion for the past seven years. We have invested and developed a very robust design and validation strategy to ensure the highest level of software quality. The design takes care of variant handling for multi-sensor fusion (radar+radar, Camera+Radar, Camear+Radar+Lidar), different sensor topology and layout, sensor characteristics, and sensor degradation. We have filed multiple patents for various fusion techniques. We have been supporting multiple OEMs and Tier-1 customers for various fusion projects for different model year programs.
Senior Practice Director for Autonomous Driving at KPIT
21 likes
Autonomous Driving
Sensor Fusion
21 likes
Connect with us
KPIT Technologies is a global partner to the automotive and Mobility ecosystem for making software-defined vehicles a reality. It is a leading independent software development and integration partner helping mobility leapfrog towards a clean, smart, and safe future. With 13000+ automobelievers across the globe specializing in embedded software, AI, and digital solutions, KPIT accelerates its clients’ implementation of next-generation technologies for the future mobility roadmap. With engineering centers in Europe, the USA, Japan, China, Thailand, and India, KPIT works with leaders in automotive and Mobility and is present where the ecosystem is transforming.
Plot Number-17,
Rajiv Gandhi Infotech Park,
MIDC-SEZ, Phase-III,
Hinjawadi, Pune – 411057
Phone: +91 20 6770 6000
Frankfurter Ring 105b,80807
Munich, GERMANY
Phone: +49 89 3229 9660
Fax: +49 89 3229 9669 99
KPIT and KPIT logo are registered trademarks | © Copyright KPIT for 2018-2024
CIN: L74999PN2018PLC174192
Cookie | Duration | Description |
---|---|---|
cookielawinfo-checbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |
Leave a Reply